a2 United States Patent

US009134996B2

(10) Patent No.: US 9,134,996 B2

Tuarbin 45) Date of Patent: Sep. 15, 2015
(54) UPDATING ANTI-VIRUS SOFTWARE (56) References Cited
(75) Inventor: Pavel Turbin, Jokela (FI) U.S. PATENT DOCUMENTS
. . . 7,086,090 B1* 82006 Dawsonetal. 726/24
(73) A551gnee: F-Secure Corporatlon, Helsinki (FI) 2003/0204833 Al* 10/2003 Pokhariyal .. 717/106
2009/0282485 Al* 112009 Bennett 726/24
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 394 days.
EP 1585350 Al 10/2005
(21) Appl. No.: 13/066,977 WO WO0-94/01819 Al 1/1994
.No.: X
* cited by examiner
(22) Filed: Apr. 28,2011 Primary Examiner — Brandon Hoffman
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Harrington & Smith
US 2012/0278892 A1 Nov. 1, 2012 (57 ABSTRACT
A method of updating an anti-virus application including an
(51) Int.CL updatable module running on a client terminal. The method
GO8SB 23/00 (2006.01) includes receiving an update at the client terminal, initializing
GOGF 9/445 (2006.01) the updatable module within a sandbox environment and
GOGF 21/53 (2013.01) applying the update to the updatable module. Control tests are
GO6F 21/56 (2013.01) then run on the updated sandboxed module and if the control
(52) U.S.CL tests are passed, the updated module is brought out of the
CPC GOGF 8/67 (2013.01); GO6F 21/53 (2013.01); sandbox environment and normal scanning is allowed to pro-
’ GOGF 21/566 (2013.01’) ceed using the updated module. If the control tests are not
(58) Field of Classification Search passed, however, normal scanning using the updated module

None
See application file for complete search history.

Client Computer

Al Recsive an
update from the

is prevented.

18 Claims, 2 Drawing Sheets

Central Server

ceniral server

I

A2. Take antiviruy
wngineoffine

A3. Losd engine into
sandbox

=

Update not
A4 ttisise update | complated correctly
and epply it 0
sandboxed engine
Update completed
cofrectly
AS. Sandboxed
engine receives a sat
of known clesn st
fies to scan
AB. Sendboxed
engineraceives a set
of nown pseudo
Sandboxed matwase test fles to Sandboxed
engine scen engine
passes the does not
teststeps. :&:;s’ atem
A8 A3to AG
A7, Engine Is brought A8. Engine ramains
out of sandbox and witin fhe sandtox, ||
mada fuly operationa! and is not made fully
again operational

A3, Send en alert o
the central server to
inform antivins ALERT
providar of prcblem
ith updete

h

AD. Send en slert b
the central server to
inform anfi-virus
pravider of prcblem
with update

U.S. Patent Sep. 15, 2015 Sheet 1 of 2 US 9,134,996 B2
Client Computer . Central Server

i
)
]
Al. Receive an '

update from the o’ 4 Update
centrel server H
'
]
3 |
]
A2. Take anfi-virus i
engine offine :
'
[]
]
t
]
|
A3 Load engine into :
sandbox |
:
[}
]
i
Update not H
A4. Initiglize update compieted correctly '
and apply it to :
sandboxed engine :
:
U pdate completed '
correctly !
1 A
1
AS. Sandboxed !
engineraoeives a sat :
of knoavn clean test (
files to scan :
'
1
L]
i

AB. Sandboxed d .

engine receives a sat : Flgure 1

of &inown pseudo) !
Sandboxed malware test files to Sandhoxed !
engine scan engine !
passes the does not j
{est steps f;stssigfrs E
AltoAs A3to A6 |
i
h 4 A :
[}
A7. Engineis brought A8. Engine remains '
out of sandbox and within the sandbox, !
made fully operational and is notmade fully 1
again operational H
|
1
1
1
1
i
[}
t
t
!
)
1

U.S. Patent Sep. 15, 2015 Sheet 2 of 2 US 9,134,996 B2

2

b=
\\._‘>

1 — \
I J 4
I 1
Client Computer / 13 Central Server
CTN TS s s sty
! temory H
: : 8
, nti-virus soflware HE Updste
: H 12 - Database
)]
1 Sandbox h
) 1
i I N
1 .
i Engine : i j_____ 1 e |
E [P E 14 4 Processor
: :
1]
! Testing Update AT 9 \
) Handler Handler ""!/
: : B
' J i~ 7 Alert
v Handler
| ;
» 16 H
S scecn s ;
Processor Transceiver Internet/ Transceiver
] C\)\/‘)/

15

Figure 2

US 9,134,996 B2

1
UPDATING ANTI-VIRUS SOFTWARE

TECHNICAL FIELD

The present invention relates to the updating of anti-virus
software on a computer. In particular, though not necessarily,
the present invention is concerned with ensuring stability of
the computer during or following such updating.

BACKGROUND

This section is intended to provide background or context
to the invention recited in the claims. The description of the
background art may include insights, discoveries, under-
standings or disclosures, or associations of disclosures not
known in the prior art. Some contributions of the invention
may be specifically pointed out below, whereas other contri-
butions of the invention will be apparent from their context.

The term “malware” is short for malicious software and is
used to refer to any software designed to infiltrate or damage
a computer system without the owner’s informed consent.
Malware can include viruses, worms, trojan horses, rootkits,
adware, spyware and any other malicious and unwanted soft-
ware. Many computer devices, such as desktop personal com-
puters (PCs), laptops, personal data assistants (PDAs) and
mobile phones can be at risk from malware.

Detecting malware is often challenging, as malware may
be designed to be difficult to detect, often employing tech-
nologies that deliberately hide the presence of malware on a
system. For example a malware application may not show up
on the operating system tables that list currently-running
processes on a computer.

Many end users make use of anti-virus software to detect
and possibly remove malware. In order to detect a malware
file, the anti-virus software must have some way of identify-
ing it amongst all the other files present on a device. Typically,
this requires that the anti-virus software has a database con-
taining the “signatures” or “fingerprints” that are character-
istic of individual malware program files. When the supplier
of the anti-virus software identifies a new malware threat, the
threat is analysed and its signature is generated. The malware
is then “known” and its signature can be distributed to end
users as updates to their local anti-virus software databases.

New malware is constantly being created and therefore
regular updates to the anti-virus software are essential. In
addition to updating the virus signatures, improvements to the
software and its components are also distributed to end users,
via the web, which ensure that the software runs efficiently
and benefits from any software enhancements that may have
been developed. Anti-virus software will typically contain a
number of modules that are updatable, for example the scan-
ning engine, parts of the scanning logic, drivers and Ul com-
ponents. Every week, anti-virus software will typically
receive hundreds of updated components, including new sig-
natures, configuration data and software components. Once
the supplier of the anti-virus software has identified a new
piece of malware, it is important that an update is sent out
quickly to end users so that their computer systems are pro-
tected from an attack from said malware.

Due to the short timeframe and tight update schedule that is
required, there is a significant chance that a given update may
contain errors, and quality assurance is not always perfect.
This is compounded by the fact that anti-virus software is
used by a very large number of end users using many different
computer system configurations. As such, anti-virus software
will be expected to perform correctly on computer systems
with different operating systems, language localizations, dif-

10

20

30

40

45

50

55

2

ferent installed components and so on. This makes it very
hard to recreate or model exactly the same configuration in
testing as that running on end-user computer systems.

Each update that is sent out to end users can potentially
cause instability in the anti-virus software running on their
computer systems. Furthermore, due to the high level require-
ments of anti-virus software (i.e. the detection and removal of
potentially harmful installed components), it typically runs at
a high system level and so any problems with the anti-virus
software, due to a faulty update for example, can cause severe
disruptions to a user’s computer system. Examples of com-
mon issues arising from problem updates are stability prob-
lems due to the received update not being compatible with
one or more current components in the software causing the
computer system to crash, “hanging” during virus scanning or
very lengthy scan times, losing malware detection and/or
clean up function entirely, or the engine returning false posi-
tives caused by the an update.

The problems mentioned above can be particularly severe
if they are in relation to common system files. For example if
a crash occurs during scanning of an operating system file, or
if such a file was returned as a false positive then this could
potentially lead to a problem that is so severe that the com-
puter system no longer functions correctly. Another major
concern is that a problem update locks down the anti-virus
software and it becomes impossible to provide an automatic
update fix, requiring a complete re-installation of the soft-
ware.

SUMMARY

It is an object of the present invention to overcome the
problems discussed above and which result from updates to
anti-virus software. This object is achieved by providing a
sandbox environment that mirrors the main anti-virus envi-
ronment into which the updatable module can be loaded and
the update applied. The stability of the update can then be
tested before the module is brought out of the sandbox envi-
ronment and into normal usage.

According to afirstaspect of the invention there is provided
a method of updating an anti-virus application comprising an
updatable module running on a client terminal. The method
comprises receiving an update at the client terminal, initial-
ising the updatable module within a sandbox environment
and applying the update to the updatable module. Control
tests are then run on the updated sandboxed module and if the
control tests are passed, the updated module is brought out of
the sandbox environment and normal scanning is allowed to
proceed using the updated module. If the control tests are not
passed, however, normal scanning using the updated module
is prevented.

Embodiments of the present invention may provide an
improved method of updating anti-virus software on a client
computer. Embodiments of the current invention may also
provide a method of reducing the undesirable effects that
problem updates can have on a client computer.

The updatable module may be a scanning engine.

The sandbox environment may be a sandboxed instance of
a scanning process of the anti-virus application and may be
implemented as a runner process with reduced functionality,
aforked, or cloned, instance of the main scanning process, but
with disabled functionality, or a reduced form of the main
scanning process where the engine is run in a transparent
mode.

The sandboxed module may be made to perform multiple
cycles of initializations with different configuration param-
eters.

US 9,134,996 B2

3

A control test may comprise scanning a selection of known
clean and/or malicious files to confirm that the updated mod-
ule is functioning correctly. The selection of known clean
and/or malicious files may comprise one or more of operating
system files, anti-virus application files, previous N-scanned
files, user documents, locally fuzzed files and predefined files.

A control test may include checking that standard module
processes do not cause an application or system crash and
may include checking that standard module processes do not
cause CPU and/or memory spikes.

If'the control tests are not passed, an alert may be sent from
the client terminal to a server of an anti-virus application
provider, the alert providing details of the failed control test
(s).

According to a second aspect of the invention, there is
provided a method of scanning a client terminal for malware
using an anti-virus application comprising an updated mod-
ule. The method comprises scanning the client terminal for
potential malware and upon detection of potential malware
initialising the updated module within a sandbox environ-
ment and running control tests on the sandboxed updated
module. If the control tests are passed, the detection of the
potential malware is confirmed and if the control tests are not
passed, either the detection is rejected or further tests are
performed on the potential malware.

According to a third aspect of the invention, there is pro-
vided a client terminal comprising a scanning engine for
detecting malware on the client terminal, an update handler
for receiving updates for the scanning engine, a sandbox
environment in which the scanning engine can be initialised
when it is to be updated, and a testing handler for testing that
the updated scanning engine functions correctly within the
sandbox environment.

The testing handler may be configured to test the updated
scanning engine using known clean and/or malware files.

According to a fourth aspect of the invention, there is
provided a computer program product comprising a com-
puter-readable medium bearing computer program code
embodied therein for use with a computer. The computer
program code comprises code for receiving an update at the
client terminal, code for initialising an updatable module of
an anti-virus application within a sandbox environment and
applying the update to the updatable module, code for run-
ning control tests on the updated sandboxed module, and code
for bringing the updated module out of the sandbox environ-
ment and allowing normal scanning to proceed using the
updated module when the control tests are passed and code
for preventing normal scanning using the updated module
when the control tests are not passed,

The sandbox environment may be a sandboxed instance of
a scanning process of the anti-virus application and the com-
puter program code may further comprise code for imple-
menting the sandboxed instance of the scanning process in at
least one of the following ways: as a runner process with
reduced functionality; as a forked, or cloned, instance of the
main scanning process, but with disabled functionality; or as
areduced form of the main scanning process where the engine
is run in a transparent mode.

The computer program product may further comprise code
for performing multiple cycles of initializations of the sand-
boxed module with different configuration parameters.

The code for running control tests may run control tests
comprising at least one of the following: scanning a selection
of known clean and/or malicious files to confirm that the
updated module is functioning correctly; checking that stan-

10

15

20

25

30

35

40

45

50

55

60

65

4

dard module processes do not cause an application or system
crash; checking that standard module processes do not cause
CPU and/or memory spikes.

The computer program product may further comprise code
for sending an alert from the client terminal to a server of an
anti-virus application provider if the control tests are not
passed, the alert providing details of the failed control test(s).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram illustrating a method of updating
anti-virus software on a client terminal according to an
embodiment of the invention;

FIG. 2 illustrates schematically a computer system accord-
ing to an embodiment of the present invention.

DETAILED DESCRIPTION

As discussed above, anti-virus software requires regular
updates to ensure that end user computers (“client terminals™)
have the latest malware signatures and software enhance-
ments to provide them with the best possible protection
against malware. With the short timeframe provided for get-
ting these updates ready for distribution, and the wide ranging
computer system configurations to which the updates are to
be applied, there can often be issues on client terminals that
arise from “problem updates”.

A method will now be described that can be used to allow
an antivirus software update to be tested on a client terminal
prior to the updated software being used in a “live” environ-
ment. The updated software can be tested in such a way that
there will be no detrimental effect on the client terminal
should the update not perform correctly. This method
involves loading the updatable module in a sandbox environ-
ment and applying the update within the sandbox. A series of
control tests are then carried out which are designed to check
that the updated sandboxed module functions correctly. If
there are any problems with the update that cause the module
to function incorrectly or cause stability issues then, because
of'the sandbox, the rest of the machine will not be affected and
there will be no adverse effects experienced by the user. The
updatable module can be any updatable module within the
anti-virus software, for example a part of scanning logic, a
driver, a Ul component etc. In this example it is described as
being the anti-virus scanning engine. The term “engine” as
used here covers both the executable library and signatures
belonging to it.

FIG. 1 is a flow diagram showing the steps of a method of
updating anti-virus software on a client terminal. The steps of
the method are:

Al. The client terminal receives an update from a central

server via the internet

A2. The anti-virus engine is taken offline

A3. The engine is loaded into a sandbox environment

Ad4. The update is initialised and applied to the sandboxed

engine

AS5. After confirmation that the update has been completed

correctly, the sandboxed engine receives a set of known
clean test files to scan

A6. The sandboxed engine then receives a set of known

pseudo malware files to scan

A7. If the sandboxed engine behaves correctly during the

test steps A3 to A6, the engine is made operational again

AS8. Ifthe sandbox engine does not pass the test steps A3 to

A6, or if it does not function correctly, the engine
remains offline

US 9,134,996 B2

5

A9. An alert is sent from the client terminal to the central
server to inform the anti-virus provider of an issue with
the update.

Considering this method in more detail, in step Al, the
client terminal receives an update from a central server. This
update will typically be provided from a back-end server
owned or otherwise controlled by the provider of the anti-
virus software. The method describes the update being deliv-
ered to the client terminal via the internet, but it is possible
that the update is provided by another means, for example via
physical media such as a CD-ROM, DVD-ROM, flash drive
or similar. On receiving the update, the anti-virus engine is
taken offline in step A2. This ensures that the update is not
applied to the engine within the normal working environment
of the anti-virus software and that the engine does not scan
any of the user’s files before it has been tested.

In step A3, the engine is loaded in a sandbox environment.
As will be understood by the skilled person, a “sandbox
environment” is one which mimics the true (computer) oper-
ating environment, but which prevents changes being madeto
operating settings which might adversely affect the comput-
er’s performance, for example a sandbox environment will
not be allowed to modify key system settings such as registry
keys. A typical implementation of a sandbox environment
will involve allocating a block of memory to the sandbox
which “simulates” the true system memory.

An anti-virus scanner can be considered to consist of two
modules: a scanning process (framework) and the scanning
engine. The scanning process is an executable, which loads
the engine. The scanning process enables integration with the
operating system by determining the files to be scanned and
sending corresponding scanning requests to the engine. The
engine provides a scanning interface that processes scanning
requests generated by the scanning process. If the engine
detects malware during scanning, the scanning process
blocks the file and possibly removes the malware. The sand-
box environment in this context can be understood as being a
pseudo scanning process. It functions in a similar way to the
normal scanning process, with the sandbox loading the
engine and sending scan requests to the engine. The key
difference between the sandbox environment and the scan-
ning process is that unusual or unwanted behaviour of the
engine, for example crashing or hanging during scanning or
detection of false positives, won’t give rise to any damaging
consequences for the computer system.

There are a number of ways in which the sandbox may be
implemented. Three of which are:

1. The scanning process of the sandbox is carried out as a
“runner” process, which allows executing scanning
methods from the engine. The process receives a file
path or buffer, sends a request to the engine and reports
the scanning result. The “runner” sandbox is a light
version of the main scanning process, which only has the
functionality to load and scan with the engine and has no
other logic such as hooking files.

2. The scanning process of the sandbox is a forked (or
cloned) instance of the main scanning process. The main
anti-virus scanning process produces a self copy and
passes the updated engine path to the clone process. The
“clone” sandbox initializes the engine in the same way
as it would be by the main scanning process. However
any results from the scanning will be ignored.

3. The scanning process of the sandbox is a reduced form of
the main scanning process, known as an “embedded”
sandbox. The engine is loaded normally, but while it is
offline the engine is working in a “transparent mode”

10

15

20

25

30

35

40

45

50

55

60

65

6

until its consistency is confirmed. Here, “transparent
mode” means that any results from scanning won’t be
reported to user.

Methods 1 and 2 provide better reliability, since in case of
engine crash or hang during self test the sandbox process
could be simply terminated. Method 3, however, is faster and
consumes fewer resources as no new process instance is cre-
ated.

In step A4 the update is initialised and applied to the sand-
boxed engine. The sandbox can perform multiple cycles of
initialisations with differing configuration parameters to
ensure that the update is correctly applied under a number of
different computer configurations. For example the default
configuration may initialize the engine with a minimal set of
features and/or with a low heuristics level, but other initiali-
sations are also carried out with different numbers of features
enabled and with different levels of scanning heuristics. If the
update is not completed correctly, the method skips to steps
A8 and A9 where the engine remains offline and an alert is
sent to the central server to inform the anti-virus provider that
there is a problem with the update. Of course, an un-updated
engine may be kept online to ensure that a level of security is
maintained, at the same time as sending the alert to the soft-
ware provider.

If the update is completed correctly, in step A5 the sand-
boxed engine receives a set of known clean files to scan. In
order to pass this test, the engine must not detect any of these
files as being malicious. The set of files can be a selection of
files including, but not limited to, operating system files, files
which are part of the anti-virus software itself, previous
N-scanned files, user documents, locally “fuzzed” files and
predefined files. The file set can be updatable and/or can be
built by the anti-virus software “on-the-fly” from existing
files. Operating system files can be selected from a critical list
and could be, for example, explorer.exe, winlogin.exe, svcho-
st.exe and/or kernel32.d1l. Files from the anti-virus software
itself could be, for example, user-interface, help, readme files
etc. For the user document files, the anti-virus software keeps
track of the last created files on the machine and adds them to
the set of clean files. For the previous N-scanned files, the
anti-virus may keep track of the last files scanned by the
anti-virus software before the update was received. This can
be a predefined number of previously scanned files (for
example N=100). In addition to these “static” clean files
within the clean set, the anti-virus software can create locally
“fuzzed” files. In order to do this, the anti-virus software takes
files of popular formats, for example JPG, HTML, JS and
DOC and randomizes some areas of the files. The predefined
files can be stored in an archive file that contains a number of
basic files. Assuming that the update installs correctly, at step
AS5, the sandboxed engine should scan the test files and no
malware should be detected. During the scanning the anti-
virus software also checks for stability issues such as crash-
ing, hanging, CPU and/or memory spikes or other anomalous
behaviour. It may also check that scanning of individual files
does not exceed a defined threshold, for example 1 second.

Step A6 is similar to step A5. However, instead of a set of
known clean files, the sandboxed engine is given a set of
known pseudo malware files to scan. In this instance the
engine should detect each of the files within the sample set.
Again, as in step A5, the scanning process is monitored to
check for stability issues.

If the engine behaves correctly during step A5 and A6 and
detects all the correct malware files without any stability
issues arising, then the test is considered as having been
passed, and in step A7 the engine is brought out of the sand-
box and made operational again. At this stage it can resume

US 9,134,996 B2

7

normal scanning of the client terminal files. If however the
sandboxed engine doesn’t pass the tests of steps A5 and A6,
either because it identifies trusted or pseudo-malware files
incorrectly or stability issues are detected, then in step A8 the
sandboxed engine is kept offline. Step A8 can also be arrived
atifthe update was not completed correctly in step A4. In step
A9, an alert is sent from the client terminal to the central
server stating that an error has been detected with the latest
update. This alert may include information on the type of
error that has been detected. This will make the provider of
the anti-virus software aware of the issue so that a new update
can be produced and sent out to client terminals. This new
update can then be tested again by the anti-virus by following
steps A4 onwards, in the expectation that the new update will
fix the engine so that it can return to operational mode.

Detection and blocking of files that have been detected as
being malware can cause severe problems for the client ter-
minal. Therefore, as an extra check to ensure the best possible
system performance, the anti-virus engine performance test-
ing procedure may be repeated when malware is detected in
normal use, i.e. during “real-time” scanning. In particular,
steps A3to A7 or A9 of FIG. 1 are performed to ensure that the
engine is running correctly. If the “self-test” is passed and a
determination made that the scanning engine is performing
correctly, then the malware detection is confirmed and appro-
priate action taken, e.g. the malware file(s) is(are) quaran-
tined and/or disinfected/deleted and the user notified. If how-
ever the self-test is not passed, then this can be an indication
that the detected file(s) may not in fact be malware. In this
case the anti-virus application will wait until a new update is
released which does pass the self-test before re-scanning the
detected file and determining whether or not to report it to the
user.

FIG. 2 illustrates schematically a computer system accord-
ing to an embodiment of the present invention. The computer
system comprises at least one client terminal 1 connected to a
central server 2 over a network 3 such as the Internet or a
LAN. The client terminal 1 can be implemented as a combi-
nation of computer hardware and software. A client terminal
1 comprises a memory 4, a processor 5 and a transceiver 6.
The memory 4 stores the various programs/executable files
that are implemented by the processor 5, and also provides a
storage unit 7 for any required data. Anti-virus software 8 is
stored on the memory 4, and contains sub units such as an
update handler 9, scanning engine 10, sandbox 11, and testing
handler 16 as shown in FIG. 2. The scanning engine 10 is able
to be run either in or out of the sandbox 11. When an update
is received by the client terminal 1, the engine 10 is taken
offline and initialised within the sandbox 11. The update
handler 9 will update the engine 10, and the testing handler 16
will then test the updated engine 10 to check that it is func-
tioning correctly. The transceiver 6 is used to communicate
with the central server 2 over the network 3 and can receive
updates from the central server as well as send alerts back to
the central server from the client terminal. Typically, the
client terminals 1 may be any of a desktop personal computer
(PC), laptop, personal data assistant (PDA) or mobile phone,
or any other suitable device.

The central (backend) server 2 is typically run by the pro-
vider of the anti-virus software, and comprises a processor 12,
a database 13 containing the updates to be sent out to the
client terminals 1, an alert handler 14 and a transceiver 15.
The transceiver 15 sends out updates to client terminals, and
also receives any alerts that the client terminals send back to
the central server regarding problems with any updates. These
alerts are then passed to the alert handler 14 which allows the

15

20

25

30

35

40

45

50

55

60

65

8

anti-virus provider to address the problems that have arisen in
the update, and create a new improved update.

The method of updating anti-virus software proposed here
allows updates to be tested on each client terminal prior to it
being implemented in the normal anti-virus scanning envi-
ronment. Standard “backend” testing of updates can never
model each and every possible computer configuration prior
to the update being made available to end users, and so prob-
lem updates can cause instability in both the anti-virus soft-
ware and the client terminal as a whole. This method over-
comes the previous limitations of updating anti-virus
software which was reactive towards problem updates only
after instability issues had been experienced by end-users,
and provides an assurance to end-users that updates will only
be installed on their systems once it has been tested in a
sandbox that has been individually tailored to mirror their
computer system.

The techniques described herein may be implemented by
various means so that an apparatus/system implementing one
or more functions described with an embodiment comprises
not only prior art means, but also means for implementing the
one or more functions of a corresponding apparatus described
with an embodiment and it may comprise separate means for
each separate functions. These techniques may be imple-
mented in hardware (one or more modules) or combinations
thereof. For software, implementation can be through mod-
ules, e.g. procedures, functions, and so on, that perform the
functions described herein. The software codes may be stored
in any suitable, processor/computer-readable data storage
medium or memory unit(s) or articles(s) of manufacture and
be executed by one or more processors/computers. The data
storage medium or memory unit may be implemented within
the processor/computer, or external to the processor/com-
puter, in which case it can be communicatively coupled to the
processor/computer via various means, as is known in the art.

The programming, such as executable code or instructions,
electronic data, databases or other digital information can be
stored into memories and it may include processor-usable
medium. Processor-usable medium may be embodied in any
computer program product or article of manufacture which
can contain, store, or maintain programming, data or digital
information for use by or in connection with an instruction
execution system including the processor 5 in the exemplary
embodiment.

In an embodiment, there is provided a computer program
product comprising a computer-readable medium bearing
computer program code embodied therein for use with a
computer, the computer program code comprising: code for
receiving an update at the client terminal, code for initialising
an updatable module of an anti-virus application within a
sandbox environment and applying the update to the updat-
able module, code for running control tests on the updated
sandboxed module, code for bringing the updated module out
of'the sandbox environment and allowing normal scanning to
proceed using the updated module when the control tests are
passed, and code for preventing normal scanning using the
updated module when the control tests are not passed.

Embodiments of the present invention may be imple-
mented in software, hardware, application logic or a combi-
nation of software, hardware and application logic. In an
example embodiment, the application logic, software or an
instruction set is maintained on any one of various conven-
tional computer-readable media. In the context of this docu-
ment, a “computer-readable medium” may be any media or
means that can contain, store, communicate, propagate or
transport the instructions for use by or in connection with an
instruction execution system, apparatus, or device, such as a

US 9,134,996 B2

9

computer. A computer-readable medium may comprise a
computer-readable storage medium that may be any media or
means that can contain or store the instructions for use by or
in connection with an instruction execution system, appara-
tus, or device, such as a computer.

It will be appreciated by the person of skill in the art that
various modifications may be made to the above described
embodiments without departing from the scope of the present
invention. For example, the updatable module which is
described in the examples as being the scanning engine, may
alternatively be part of, for example, the scanning logic, a
driver or a Ul component.

The invention claimed is:

1. A method of updating an anti-virus application compris-
ing an updatable module running on a client terminal, the
method comprising:

receiving an update for the updatable module of the anti-

virus application at the client terminal;

initialising the updatable module within a sandbox envi-

ronment and applying the update to the updatable mod-
ule;

running control tests on the updated module in the sandbox

environment;

if the control tests are passed, bringing the updated module

out of the sandbox environment and allowing normal
scanning by the anti-virus application to proceed using
the updated module; and

if the control tests are not passed, preventing normal scan-

ning using the updated module;

wherein the control tests comprise scanning a selection of

known clean and/or malicious files using the anti-virus
application comprising the updated module to confirm
that the updated module is functioning correctly.

2. A method as claimed in claim 1, wherein the updatable
module is a scanning engine.

3. A method as claimed in claim 1, wherein the sandbox
environment is a sandboxed instance of a scanning process of
the anti-virus application.

4. A method as claimed in claim 3, wherein the sandboxed
instance of the scanning process is implemented as a runner
process with reduced functionality.

5. A method as claimed in claim 3, wherein the sandboxed
instance of the scanning process is implemented as a forked,
or cloned, instance of the main scanning process, but with
disabled functionality.

6. A method as claimed in claim 3, wherein the sandboxed
instance of the scanning process is a reduced form ofthe main
scanning process where the engine is run in a transparent
mode.

7. A method as claimed in claim 1, wherein the sandboxed
module is made to perform multiple cycles of initializations
with different configuration parameters.

8. A method as claimed in claim 1, wherein the selection of
known clean and/or malicious files comprises one or more of
operating system files, anti-virus application files, previous
N-scanned files, user documents, locally fuzzed files and
predefined files.

9. A method as claimed in claim 1, wherein a control test
includes checking that standard module processes do not
cause an application or system crash.

10. A method as claimed in claim 1, wherein a control test
includes checking that standard module processes do not
cause CPU and/or memory spikes.

11. A method as claimed in claim 1, wherein, if the control
tests are not passed, an alert is sent from the client terminal to
a server of an anti-virus application provider, the alert pro-
viding details of the failed control test(s).

10

15

20

25

30

40

45

50

55

60

65

10

12. A method of scanning a client terminal for malware
using an anti-virus application comprising an updated mod-
ule, the method comprising:

scanning the client terminal for potential malware; and

upon detection of potential malware

initialising the updated module within a sandbox envi-
ronment;

running control tests on the sandboxed updated module;

if the control tests are passed, confirming the detection
of the potential malware; and

if the control tests are not passed, either rejecting the
detection or performing further tests on the potential
malware;

wherein the control tests comprise scanning a selection
of known clean and/or malicious files using the anti-
virus application comprising the updated module to
confirm that the updated module is functioning cor-
rectly.

13. A client terminal comprising:

a scanning engine for detecting malware on the client ter-

minal;

an update handler for receiving updates for the scanning

engine;

a sandbox environment in which the scanning engine can

be initialised when it is to be updated; and

a testing handler for testing that the updated scanning

engine functions correctly within the sandbox environ-
ment;

wherein said testing handler is configured to test the

updated scanning engine using known clean and/or mal-
ware files.

14. A computer program product comprising a non-transi-
tory computer-readable medium bearing computer program
code embodied therein for use with a computer, the computer
program code comprising:

code for receiving an update at the client terminal;

code for initialising an updatable module of an anti-virus

application within a sandbox environment and applying
the update to the updatable module;

code for running control tests on the updated sandboxed

module;

code for bringing the updated module out of the sandbox

environment and allowing normal scanning to proceed
using the updated module when the control tests are
passed; and

code for preventing normal scanning using the updated

module when the control tests are not passed;

wherein the control tests comprise scanning a selection of

known clean and/or malicious files using the anti-virus
application comprising the updated module to confirm
that the updated module is functioning correctly.

15. A computer program product as claimed in claim 14,
wherein the sandbox environment is a sandboxed instance of
a scanning process of the anti-virus application and the com-
puter program code further comprises: code for implement-
ing the sandboxed instance of the scanning process in at least
one of the following ways: as a runner process with reduced
functionality; as a forked, or cloned, instance of the main
scanning process, but with disabled functionality; as a
reduced form of the main scanning process where the engine
is run in a transparent mode.

16. A computer program product as claimed in claim 14,
wherein the computer program product further comprises
code for performing multiple cycles of initializations of the
sandboxed module with different configuration parameters.

17. A computer program product as claimed in claim 14,
wherein the code for running control tests runs control tests

US 9,134,996 B2

11

comprising at least one of the following: checking that stan-
dard module processes do not cause an application or system
crash; checking that standard module processes do not cause
CPU and/or memory spikes.

18. A computer program product as claimed in claim 14,
wherein the computer program product further comprises
code for sending an alert from the client terminal to a server of
an anti-virus application provider if the control tests are not
passed, the alert providing details of the failed control test(s).

#* #* #* #* #*

10

12

